PROBLEM

If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the maximum value of (p+q) is [2007]

(a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\sqrt{2}$

(d) 2.

SOLUTION

(c) Given that $p^2 + q^2 = 1$: $p = \cos \theta$ and $q = \sin \theta$

Then $p + q = \cos \theta + \sin \theta$

We know that

$$-\sqrt{a^2 + b^2} \le a\cos\theta + b\sin\theta \le \sqrt{a^2 + b^2}$$

$$\therefore -\sqrt{2} \le \cos\theta + \sin\theta \le \sqrt{2}$$

Hence max. value of p + q is $\sqrt{2}$